Loading Events
  • This event has passed.
Stochastics and Statistics Seminar

Less is more: optimal learning by subsampling and regularization

September 16, 2016 @ 11:00 am

In this talk, I will discuss the prediction properties of techniques commonly used to scale up kernel methods and Gaussian processes. In particular, I will focus on data dependent and independent sub-sampling methods, namely Nystrom and random features, and study their generalization properties within a statistical learning theory framework. On the one hand I will show that these methods can achieve optimal learning errors while being computational efficient. On the other hand, I will show that subsampling can be seen as a form of regularization, rather than only a way to speed up computations. Joint work with Raffaello Camoriano, Alessandro Rudi.

© MIT Statistics + Data Science Center | 77 Massachusetts Avenue | Cambridge, MA 02139-4307 | 617-253-1764 |