Upcoming

Fall 2023

Sep 8 – Alex Wein (UC – Davis)
Fine-Grained Extensions of the Low-Degree Testing Framework

Sep 15 – Vasilis Syrgkanis (Stanford University)
Source Condition Double Robust Inference on Functionals of Inverse Problems

Sep 22 – No Seminar

Sep 29 – Vladimir Spokoiny (Humboldt University – Berlin)
Estimation and inference for error-in-operator model

Oct 6 – Nikita Zhivotovskiy (UC – Berkeley)
Sharper Risk Bounds for Statistical Aggregation

Oct 13 – Emmanuel Abbe (EPFL)
A proof of the RM code capacity conjecture

Oct 20 – Sam Hopkins (MIT)
The Full Landscape of Robust Mean Testing: Sharp Separations between Oblivious and Adaptive Contamination

Oct 27 – Stephen Bates (MIT)
Hypothesis testing with information asymmetry

Oct 27
– *POSTPONED* Franca Hoffmann (California Institute of Technology)

Nov 3 – Anna Gilbert (Yale University)

Nov 10 – No Seminar

Nov 17 – Jianfeng Lu (Duke University)
Analysis of Flow-based Generative Models

Nov 24 – No Seminar

Dec 1 – Lester Mackey (Microsoft Research)
Advances in Distribution Compression

Dec 8 – Nicolas Flammarion (EPFL)

Dec 15 – Zaid Harchaoui (University of Washington)


© MIT Statistics + Data Science Center | 77 Massachusetts Avenue | Cambridge, MA 02139-4307 | 617-253-1764 |
      
Accessibility