Loading Events
  • This event has passed.
Stochastics and Statistics Seminar

Statistics, Computation and Learning with Graph Neural Networks

November 3, 2017 @ 11:00 am - 12:00 pm

Joan Bruna Estrach (NYU)


Abstract:  Deep Learning, thanks mostly to Convolutional architectures, has recently transformed computer vision and speech recognition. Their ability to encode geometric stability priors, while offering enough expressive power, is at the core of their success. In such settings, geometric stability is expressed in terms of local deformations, and it is enforced thanks to localized convolutional operators that separate the estimation into scales.

Many problems across applied sciences, from particle physics to recommender systems, are formulated in terms of signals defined over non-Euclidean geometries, and also come with strong geometric stability priors. In this talk, I will present techniques that exploit geometric stability in general geometries with appropriate graph neural network architectures. We will show that these techniques can all be framed in terms of local graph generators such as the graph Laplacian. We will present some stability certificates, as well as applications to computer graphics, particle physics and graph estimation problems. In particular, we will describe how graph neural networks can be used to reach statistical detection thresholds in community detection on random graph families, and attack hard combinatorial optimization problems, such as the Quadratic Assignment Problem.

Biography:  Joan Bruna graduated from Universitat Politecnica de Catalunya (Barcelona, Spain) in both Mathematics and Electrical Engineering. He obtained an M.Sc. in applied mathematics from ENS Cachan (France). He then became a research engineer in an image processing startup, developing real-time video processing algorithms. He obtained his PhD in Applied Mathematics at Ecole Polytechnique (France). He was a postdoctoral researcher at the Courant Institute, NYU, New York, and a fellow at Facebook AI Research. In 2015, he became Assistant Professor at UC Berkeley, Statistics Department, and starting Fall 2016 he joined the Courant Institute (NYU, New York) as Assistant Professor in Computer Science, Data Science and Mathematics (affiliated). His research interests include invariant signal representations, high-dimensional statistics and stochastic processes, deep learning and its applications to signal processing.

MIT Statistics + Data Science Center
Massachusetts Institute of Technology
77 Massachusetts Avenue
Cambridge, MA 02139-4307