Loading Events
  • This event has passed.
Stochastics and Statistics Seminar

Sharper Risk Bounds for Statistical Aggregation

October 6, 2023 @ 11:00 am - 12:00 pm

Nikita Zhivotovskiy (University of California, Berkeley)


Abstract: In this talk, we revisit classical results in the theory of statistical aggregation, focusing on the transition from global complexity to a more manageable local one. The goal of aggregation is to combine several base predictors to achieve a prediction nearly as accurate as the best one, without assumptions on the class structure or target. Though studied in both sequential and statistical settings, they traditionally use the same “global” complexity measure. We highlight the lesser-known PAC-Bayes localization enabling us to prove a localized bound for the exponential weights estimator by Leung and Barron, and a deviation-optimal localized bound for Q-aggregation. Finally, we demonstrate that our improvements allow us to obtain bounds based on the number of near-optimal functions in the class, and achieve polynomial improvements in sample size in certain nonparametric situations. This is contrary to the common belief that localization doesn’t benefit nonparametric classes. Joint work with Jaouad Mourtada and Tomas Vaškevičius.


Bio: Nikita Zhivotovskiy is an Assistant Professor in the Department of Statistics at the University of California Berkeley. He previously held postdoctoral positions at ETH Zürich in the department of mathematics hosted by Afonso Bandeira, and at Google Research, Zürich hosted by Olivier Bousquet. He also spent time at the Technion I.I.T. mathematics department hosted by Shahar Mendelson. Nikita completed his thesis at Moscow Institute of Physics and Technology under the guidance of Vladimir Spokoiny and Konstantin Vorontsov.

MIT Statistics + Data Science Center
Massachusetts Institute of Technology
77 Massachusetts Avenue
Cambridge, MA 02139-4307