Views Navigation

Event Views Navigation

A Flexible Defense Against the Winner’s Curse

Tijana Zrnic, Stanford University
E18-304

Abstract: Across science and policy, decision-makers often need to draw conclusions about the best candidate among competing alternatives. For instance, researchers may seek to infer the effectiveness of the most successful treatment or determine which demographic group benefits most from a specific treatment. Similarly, in machine learning, practitioners are often interested in the population performance of the model that empirically performs best. However, cherry-picking the best candidate leads to the winner’s curse: the observed performance for the winner is biased…

Find out more »


MIT Statistics + Data Science Center
Massachusetts Institute of Technology
77 Massachusetts Avenue
Cambridge, MA 02139-4307
617-253-1764