Overcoming Overfitting with Algorithmic Stability
Most applications of machine learning across science and industry rely on the holdout method for model selection and validation. Unfortunately, the holdout method often fails in the now common scenario where the analyst works interactively with the data, iteratively choosing which methods to use by probing the same holdout data many times. In this talk, we apply the principle of algorithmic stability to design reusable holdout methods, which can be used many times without losing the guarantees of fresh data.…