Views Navigation

Event Views Navigation

Calendar of Events

S Sun

M Mon

T Tue

W Wed

T Thu

F Fri

S Sat

0 events,

0 events,

0 events,

0 events,

0 events,

1 event,

Naive Feature Selection: Sparsity in Naive Bayes

0 events,

0 events,

1 event,

0 events,

0 events,

0 events,

0 events,

0 events,

0 events,

0 events,

0 events,

0 events,

0 events,

0 events,

0 events,

0 events,

0 events,

0 events,

0 events,

0 events,

0 events,

0 events,

0 events,

0 events,

0 events,

0 events,

0 events,

0 events,

0 events,

0 events,

0 events,

0 events,

0 events,

0 events,

0 events,

0 events,

Naive Feature Selection: Sparsity in Naive Bayes

Alexandre d'Aspremont (ENS, CNRS)
online

Abstract: Due to its linear complexity, naive Bayes classification remains an attractive supervised learning method, especially in very large-scale settings. We propose a sparse version of naive Bayes, which can be used for feature selection. This leads to a combinatorial maximum-likelihood problem, for which we provide an exact solution in the case of binary data,…

Find out more »


MIT Statistics + Data Science Center
Massachusetts Institute of Technology
77 Massachusetts Avenue
Cambridge, MA 02139-4307
617-253-1764