Stochastics and Statistics Seminar Franca Hoffmann, California Institute of Technology
Consensus-based optimization and sampling
Abstract: Particle methods provide a powerful paradigm for solving complex global optimization problems leading to highly parallelizable algorithms. Despite widespread and growing adoption, theory underpinning their behavior has been mainly based on meta-heuristics. In application settings involving black-box procedures, or where gradients are too costly to obtain, one relies on derivative-free approaches instead. This talk will focus on two recent techniques, consensus-based optimization and consensus-based sampling. We explain how these methods can be used for the following two goals: (i)…