Statistical Aspects of Wasserstein Distributionally Robust Optimization Estimators
Abstract: Wasserstein-based distributional robust optimization problems are formulated as min-max games in which a statistician chooses a parameter to minimize an expected loss against an adversary (say nature) which wishes to maximize the loss by choosing an appropriate probability model within a certain non-parametric class. Recently, these formulations have been studied in the context in which the non-parametric class chosen by nature is defined as a Wasserstein-distance neighborhood around the empirical measure. It turns out that by appropriately choosing the…