Artificial Bayesian Monte Carlo Integration: A Practical Resolution to the Bayesian (Normalizing Constant) Paradox
Abstract: Advances in Markov chain Monte Carlo in the past 30 years have made Bayesian analysis a routine practice. However, there is virtually no practice of performing Monte Carlo integration from the Bayesian perspective; indeed,this problem has earned the “paradox” label in the context of computing normalizing constants (Wasserman, 2013). We first use the modeling-what-we-ignore idea of Kong et al. (2003) to explain that the crux of the paradox is not with the likelihood theory, which is essentially the same…