Understanding Machine Learning with Statistical Physics
Abstract: The affinity between statistical physics and machine learning has long history, this is reflected even in the machine learning terminology that is in part adopted from physics. Current theoretical challenges and open questions about deep learning and statistical learning call for unified account of the following three ingredients: (a) the dynamics of the learning algorithm, (b) the architecture of the neural networks, and (c) the structure of the data. Most existing theories are not taking in account all of…