SDSCon 2019 – Statistics and Data Science Conference
SDSCon 2019 is the third annual celebration of the statistics and data science community at MIT and beyond, organized by MIT’s Statistics and Data Science Center (SDSC).
SDSCon 2019 is the third annual celebration of the statistics and data science community at MIT and beyond, organized by MIT’s Statistics and Data Science Center (SDSC).
Abstract: This talk will present a class of exponential bounds for the probability that a martingale sequence crosses a time-dependent linear threshold. Our key insight is that it is both natural and fruitful to formulate exponential concentration inequalities in this way. We will illustrate this point by presenting a single assumption and a single theorem that together strengthen many tail bounds for martingales, including classical inequalities (1960-80) by Bernstein, Bennett, Hoeffding, and Freedman; contemporary inequalities (1980-2000) by Shorack and Wellner,…
Abstract: Logistic regression is a fundamental task in machine learning and statistics. For the simple case of linear models, Hazan et al. (2014) showed that any logistic regression algorithm that estimates model weights from samples must exhibit exponential dependence on the weight magnitude. As an alternative, we explore a counterintuitive technique called improper learning, whereby one estimates a linear model by fitting a non-linear model. Past success stories for improper learning have focused on cases where it can improve computational…
Abstract: Chao Gao will discuss the problem of statistical estimation with contaminated data. In the first part of the talk, I will discuss depth-based approaches that achieve minimax rates in various problems. In general, the minimax rate of a given problem with contamination consists of two terms: the statistical complexity without contamination, and the contamination effect in the form of modulus of continuity. In the second part of the talk, I will discuss computational challenges of these depth-based estimators. An…
Abstract: Given a symmetric social network, we are interested in testing whether it has only one community or multiple communities. The desired tests should (a) accommodate severe degree heterogeneity, (b) accommodate mixed-memberships, (c) have a tractable null distribution, and (d) adapt automatically to different levels of sparsity, and achieve the optimal detection boundary. How to find such a test is a challenging problem. We propose the Signed Polygon as a class of new tests. Fix m ≥ 3. For each…
Abstract: We consider the problem of efficient sampling from the hard-core and Potts models from statistical physics. On certain families of graphs, phase transitions in the underlying physics model are linked to changes in the performance of some sampling algorithms, including Markov chains. We develop new sampling and counting algorithms that exploit the phase transition phenomenon and work efficiently on lattices (and bipartite expander graphs) at sufficiently low temperatures in the phase coexistence regime. Our algorithms are based on Pirogov-Sinai…
Developed by 11 MIT faculty members at IDSS, this seven-week course is specially designed for data scientists, business analysts, engineers and technical managers looking to learn strategies to harness data. Offered by MIT xPRO. Course begins May 13, 2019.
Over the next decade, the biggest generator of data is expected to be devices which sense and control the physical world. This explosion of real-time data that is emerging from the physical world requires a rapprochement of areas such as machine learning, control theory, and optimization. While control theory has been firmly rooted in tradition of model-based design, the availability and scale of data (both temporal and spatial) will require rethinking of the foundations of our discipline. From a machine…
Abstract: We first study the rate of convergence for learning distributions with the adversarial framework and Generative Adversarial Networks (GANs), which subsumes Wasserstein, Sobolev, and MMD GANs as special cases. We study a wide range of parametric and nonparametric target distributions, under a collection of objective evaluation metrics. On the nonparametric end, we investigate the minimax optimal rates and fundamental difficulty of the implicit density estimation under the adversarial framework. On the parametric end, we establish a theory for general…
IDS.190 - Topics in Bayesian Modeling and Computation Abstract: Many algorithms take prohibitively long to run on modern, large datasets. But even in complex data sets, many data points may be at least partially redundant for some task of interest. So one might instead construct and use a weighted subset of the data (called a "coreset") that is much smaller than the original dataset. Typically running algorithms on a much smaller data set will take much less computing time, but…