Views Navigation

Event Views Navigation

Logistic Regression: The Importance of Being Improper

Dylan Foster (MIT Institute for Foundations of Data Science)
E18-304

Abstract: Logistic regression is a fundamental task in machine learning and statistics. For the simple case of linear models, Hazan et al. (2014) showed that any logistic regression algorithm that estimates model weights from samples must exhibit exponential dependence on the weight magnitude. As an alternative, we explore a counterintuitive technique called improper learning, whereby one estimates a linear model by fitting a non-linear model. Past success stories for improper learning have focused on cases where it can improve computational…

Find out more »

Robust Estimation: Optimal Rates, Computation and Adaptation

Chao Gao (University of Chicago)
E18-304

Abstract: Chao Gao will discuss the problem of statistical estimation with contaminated data. In the first part of the talk, I will discuss depth-based approaches that achieve minimax rates in various problems. In general, the minimax rate of a given problem with contamination consists of two terms: the statistical complexity without contamination, and the contamination effect in the form of modulus of continuity. In the second part of the talk, I will discuss computational challenges of these depth-based estimators. An…

Find out more »

Optimal Adaptivity of Signed-Polygon Statistics for Network Testing (Tracy Ke, Harvard University)

Tracy Ke (Harvard University)
E18-304

Abstract: Given a symmetric social network, we are interested in testing whether it has only one community or multiple communities. The desired tests should (a) accommodate severe degree heterogeneity, (b) accommodate mixed-memberships, (c) have a tractable null distribution, and (d) adapt automatically to different levels of sparsity, and achieve the optimal detection boundary. How to find such a test is a challenging problem. We propose the Signed Polygon as a class of new tests. Fix m ≥ 3. For each…

Find out more »

Counting and sampling at low temperatures

Will Perkins (University of Illinois at Chicago)
E18-304

Abstract: We consider the problem of efficient sampling from the hard-core and Potts models from statistical physics. On certain families of graphs, phase transitions in the underlying physics model are linked to changes in the performance of some sampling algorithms, including Markov chains. We develop new sampling and counting algorithms that exploit the phase transition phenomenon and work efficiently on lattices (and bipartite expander graphs) at sufficiently low temperatures in the phase coexistence regime. Our algorithms are based on Pirogov-Sinai…

Find out more »

Learning for Dynamics and Control (L4DC)

32-123

Over the next decade, the biggest generator of data is expected to be devices which sense and control the physical world. This explosion of real-time data that is emerging from the physical world requires a rapprochement of areas such as machine learning, control theory, and optimization. While control theory has been firmly rooted in tradition of model-based design, the availability and scale of data (both temporal and spatial) will require rethinking of the foundations of our discipline. From a machine…

Find out more »

GANs, Optimal Transport, and Implicit Density Estimation

Tengyuan Liang (University of Chicago)
E18-304

Abstract: We first study the rate of convergence for learning distributions with the adversarial framework and Generative Adversarial Networks (GANs), which subsumes Wasserstein, Sobolev, and MMD GANs as special cases. We study a wide range of parametric and nonparametric target distributions, under a collection of objective evaluation metrics. On the nonparametric end, we investigate the minimax optimal rates and fundamental difficulty of the implicit density estimation under the adversarial framework. On the parametric end, we establish a theory for general…

Find out more »

Automated Data Summarization for Scalability in Bayesian Inference

Tamara Broderick (MIT)
E18-304

IDS.190 - Topics in Bayesian Modeling and Computation Abstract: Many algorithms take prohibitively long to run on modern, large datasets. But even in complex data sets, many data points may be at least partially redundant for some task of interest. So one might instead construct and use a weighted subset of the data (called a "coreset") that is much smaller than the original dataset. Typically running algorithms on a much smaller data set will take much less computing time, but…

Find out more »

Probabilistic Modeling meets Deep Learning using TensorFlow Probability

Brian Patton (Google AI)
E18-304

IDS.190 - Topics in Bayesian Modeling and Computation Speaker: Brian Patton (Google AI) Abstract: TensorFlow Probability provides a toolkit to enable researchers and practitioners to integrate uncertainty with gradient-based deep learning on modern accelerators. In this talk we'll walk through some practical problems addressed using TFP; discuss the high-level interfaces, goals, and principles of the library; and touch on some recent innovations in describing probabilistic graphical models. Time-permitting, we may touch on a couple areas of research interest for the…

Find out more »

Some New Insights On Transfer Learning

Samory Kpotufe (Columbia)
E18-304

Abstract: The problem of transfer and domain adaptation is ubiquitous in machine learning and concerns situations where predictive technologies, trained on a given source dataset, have to be transferred to a new target domain that is somewhat related. For example, transferring voice recognition trained on American English accents to apply to Scottish accents, with minimal retraining. A first challenge is to understand how to properly model the ‘distance’ between source and target domains, viewed as probability distributions over a feature…

Find out more »


MIT Statistics + Data Science Center
Massachusetts Institute of Technology
77 Massachusetts Avenue
Cambridge, MA 02139-4307
617-253-1764