Views Navigation

Event Views Navigation

Reverse hypercontractivity beats measure concentration for information theoretic converses

Jingbo Liu (MIT)
E18-304

Abstract: Concentration of measure refers to a collection of tools and results from analysis and probability theory that have been used in many areas of pure and applied mathematics. Arguably, the first data science application of measure concentration (under the name ‘‘blowing-up lemma’’) is the proof of strong converses in multiuser information theory by Ahlswede, G'acs and K"orner in 1976. Since then, measure concentration has found applications in many other information theoretic problems, most notably the converse (impossibility) results in…

Find out more »

Efficient Algorithms for the Graph Matching Problem in Correlated Random Graphs

Tselil Schramm (Harvard University)
E18-304

Abstract: The Graph Matching problem is a robust version of the Graph Isomorphism problem: given two not-necessarily-isomorphic graphs, the goal is to find a permutation of the vertices which maximizes the number of common edges. We study a popular average-case variant; we deviate from the common heuristic strategy and give the first quasi-polynomial time algorithm, where previously only sub-exponential time algorithms were known. Based on joint work with Boaz Barak, Chi-Ning Chou, Zhixian Lei, and Yueqi Sheng.   Biography:  Tselil Schramm is a postdoc in theoretical…

Find out more »

Local Geometric Analysis and Applications

Lizhong Zheng (MIT)
32-D677

Abstract: Local geometric analysis is a method to define a coordinate system in a small neighborhood in the space of distributions over a given alphabet. It is a powerful technique since the notions of distance, projection, and inner product defined this way are useful in the optimization problems involving distributions, such as regressions. It has been used in many places in the literature such as correlation analysis, correspondence analysis. In this talk, we will go through some of the basic…

Find out more »

Locally private estimation, learning, inference, and optimality

John Duchi (Stanford University)
E18-304

Abstract: In this talk, we investigate statistical learning and estimation under local privacy constraints, where data providers do not trust the collector of the data and so privatize their data before it is even collected. We identify fundamental tradeoffs between statistical utility and privacy in such local models of privacy, providing instance-specific bounds for private estimation and learning problems by developing local minimax risks. In contrast to approaches based on worst-case (minimax) error, which are conservative, this allows us to…

Find out more »

Topics in Information and Inference Seminar

Guy Bresler (MIT)
32-D677

This seminar consists of a series of lectures each followed by a period of informal discussion and social. The topics are at the nexus of information theory, inference, causality, estimation, and non-convex optimization. The lectures are intended to be tutorial in nature with the goal of learning about interesting and exciting topics rather than merely hearing about the most recent results. The topics are driven by the interests of the speakers, and with the exception of the two lectures on…

Find out more »

Algorithmic thresholds for tensor principle component analysis

Aukosh Jagannath (Harvard University)
E18-304

Abstract: Consider the problem of recovering a rank 1 tensor of order k that has been subject to Gaussian noise. The log-likelihood for this problem is highly non-convex. It is information theoretically possible to recover the tensor with a finite number of samples via maximum likelihood estimation, however, it is expected that one needs a polynomially diverging number of samples to efficiently recover it. What is the cause of this large statistical–to–algorithmic gap? To study this question, we investigate the…

Find out more »

Topics in Information and Inference Seminar

Abbas El Gamal (Stanford University)

This seminar consists of a series of lectures each followed by a period of informal discussion and social. The topics are at the nexus of information theory, inference, causality, estimation, and non-convex optimization. The lectures are intended to be tutorial in nature with the goal of learning about interesting and exciting topics rather than merely hearing about the most recent results. The topics are driven by the interests of the speakers, and with the exception of the two lectures on…

Find out more »

On the cover time of two classes of graph

Alan Frieze (Carnegie Mellon University)
E18-304

Abstract: Dense Graphs: We consider abritrary graphs G with n vertices and minimum degree at least n. where δ > 0 is constant. If the conductance of G is sufficiently large then we obtain an asymptotic expression for the cover time CG of G as the solution to some explicit transcendental equation. Failing this, if the mixing time of a random walk on G is of a lesser magnitude than the cover time, then we can obtain an asymptotic deterministic…

Find out more »

Topics in Information and Inference Seminar

Abbas El Gamal (Stanford University)

*This lecture is the second of two. The first lecture was given Thursday, October 25th. Title: Randomness and Information I and II Abstract: Exact or approximate generation of random variables with prescribed statistics from a given randomness source has many important applications, including random number generation from physical sources, Monte Carlo simulations, and randomized algorithms, e.g., for cryptography, optimization, and machine learning. It is also closely related to several fundamental questions in information theory, CS theory, and quantum information. The…

Find out more »


MIT Statistics + Data Science Center
Massachusetts Institute of Technology
77 Massachusetts Avenue
Cambridge, MA 02139-4307
617-253-1764