Views Navigation

Event Views Navigation

Latest Past Events

TAP free energy, spin glasses, and variational inference

Abstract: We consider the Sherrington-Kirkpatrick model of spin glasses with ferromagnetically biased couplings. For a specific choice of the couplings mean, the resulting Gibbs measure is equivalent to the Bayesian posterior for a high-dimensional estimation problem known as "Z2 synchronization". Statistical physics suggests to compute the expectation with respect to this Gibbs measure (the posterior mean in the synchronization problem), by minimizing the so-called Thouless-Anderson-Palmer (TAP) free energy, instead of the mean field (MF) free energy. We prove that this identification…

Medical Image Imputation

E18-304

Abstract: We present an algorithm for creating high resolution anatomically plausible images that are consistent with acquired clinical brain MRI scans with large inter-slice spacing. Although large databases of clinical images contain a wealth of information, medical acquisition constraints result in sparse scans that miss much of the anatomy. These characteristics often render computational analysis impractical as standard processing algorithms tend to fail when applied to such images. Our goal is to enable application of existing algorithms that were originally…

Data Science and Big Data Analytics: Making Data-Driven Decisions

Developed by 11 MIT faculty members at IDSS, this seven-week course is specially designed for data scientists, business analysts, engineers and technical managers looking to learn strategies to harness data. Offered by MIT xPRO. Course begins Feb 4, 2019.


MIT Statistics + Data Science Center
Massachusetts Institute of Technology
77 Massachusetts Avenue
Cambridge, MA 02139-4307
617-253-1764