Generative Models and Compressed Sensing
Abstract: The goal of compressed sensing is to estimate a vector from an under-determined system of noisy linear measurements, by making use of prior knowledge in the relevant domain. For most results in the literature, the structure is represented by sparsity in a well-chosen basis. We show how to achieve guarantees similar to standard compressed sensing but without employing sparsity at all. Instead, we assume that the unknown vectors lie near the range of a generative model, e.g. a GAN…