Interpretable prediction models for network-linked data
Prediction problems typically assume the training data are independent samples, but in many modern applications samples come from individuals connected by a network. For example, in adolescent health studies of risk-taking behaviors, information on the subjects’ social networks is often available and plays an important role through network cohesion, the empirically observed phenomenon of friends behaving similarly. Taking cohesion into account should allow us to improve prediction. Here we propose a regression-based framework with a network penalty on individual node…