Views Navigation

Event Views Navigation

Some related phase transitions in phylogenetics and social network analysis

Sebastian Roch (Wisconsin)

Abstract: Spin systems on trees have found applications ranging from the reconstruction of phylogenies to the analysis of networks with community structure. A key feature of such processes is the interplay between the growth of the tree and the decay of correlations along it. How the resulting threshold phenomena impact estimation depends on the problem considered. I will illustrate this on two recent results: 1) the critical threshold of ancestral sequence reconstruction by maximum parsimony on general phylogenies and 2)…

Find out more »

Invariance and Causality

Jonas Peters (University of Copenhagen)

Abstract: Why are we interested in the causal structure of a process? In classical prediction tasks, for example, it seems that no causal knowledge is required. In many situations, however, we are interested in a system's behavior after parts of this system have been changed. Here, causal models become important because they are usually considered invariant under those changes. A causal prediction (which uses only direct causes of the target variable as predictors) remains valid even if we intervene on…

Find out more »

Fast Rates for Bandit Optimization with Upper-Confidence Frank-Wolfe

Vianney Perchet (ENS Paris-Saclay)
E18-304

Abstract: We consider the problem of bandit optimization, inspired by stochastic optimization and online learning with bandit feedback. In this problem, the objective is to minimize a global, not necessarily cumulative, convex loss function. This framework allows us to study a very general class of problems, with applications in statistics, machine learning, and other fields. To solve this problem, we analyze the Upper-Confidence Frank-Wolfe algorithm, inspired by techniques ranging from bandits to convex optimization. We identify slow and fast of…

Find out more »

New provable techniques for learning and inference in probabilistic graphical models

Andrej Risteski (Princeton University)

Abstract: A common theme in machine learning is succinct modeling of distributions over large domains. Probabilistic graphical models are one of the most expressive frameworks for doing this. The two major tasks involving graphical models are learning and inference. Learning is the task of calculating the "best fit" model parameters from raw data, while inference is the task of answering probabilistic queries for a model with known parameters (e.g. what is the marginal distribution of a subset of variables, after…

Find out more »

Sample complexity of population recovery

Yury Polyanskiy (MIT)

Abstract: In this talk we will first consider a general question of estimating linear functional of the distribution based on the noisy samples from it. We discover that the (two-point) LeCam lower bound is in fact achievable by optimizing bias-variance tradeoff of an empirical-mean type of estimator. Next, we apply this general framework to the specific problem of population recovery. Namely, consider a random poll of sample size n conducted on a population of individuals, where each pollee is asked to…

Find out more »

Walking within growing domains: recurrence versus transience

Amir Dembo (Stanford University)
4-163

Abstract: When is simple random walk on growing in time d-dimensional domains recurrent? For domain growth which is independent of the walk, we review recent progress and related universality conjectures about a sharp recurrence versus transience criterion in terms of the growth rate. We compare this with the question of recurrence/transience for time varying conductance models, where Gaussian heat kernel estimates and evolving sets play an important role. We also briefly contrast such expected universality with examples of the rich…

Find out more »

Optimal lower bounds for universal relation, and for samplers and finding duplicates in streams

Jelani Nelson (Harvard University)
E18-304

Abstract: Consider the following problem: we monitor a sequence of edgeinsertions and deletions in a graph on n vertices, so there are N = (n choose 2) possible edges (e.g. monitoring a stream of friend accepts/removals on Facebook). At any point someone may say "query()", at which point must output a random edge that exists in the graph at that time from a distribution that is statistically close to uniform.  More specifically, with probability p our edge should come from a distribution close to uniform,…

Find out more »

2017 Charles River Lectures on Probability and Related Topics

The Charles River Lectures on Probability and Related Topics will be hosted by Harvard University on Monday, October 2, 2017 in Cambridge, MA. The lectures are jointly organized by Harvard University, Massachusetts Institute of Technology and Microsoft Research New England for the benefit of the greater Boston area mathematics community. The event features five lectures by distinguished researchers in the areas of probability and related topics. This year's lectures will be delivered by: For questions regarding the event, please email…

Find out more »

Transport maps for Bayesian computation

Youssef Marzouk (MIT)
E18-304

Abstract: Integration against an intractable probability measure is among the fundamental challenges of Bayesian inference. A useful approach to this problem seeks a deterministic coupling of the measure of interest with a tractable "reference" measure (e.g., a standard Gaussian). This coupling is induced by a transport map, and enables direct simulation from the desired measure simply by evaluating the transport map at samples from the reference. Approximate transports can also be used to "precondition" standard Monte Carlo schemes. Yet characterizing a…

Find out more »

Additivity of Information in Deep Generative Networks: The I-MMSE Transform Method

Galen Reeves (Duke University)
E18-304

Abstract:  Deep generative networks are powerful probabilistic models that consist of multiple stages of linear transformations (described by matrices) and non-linear, possibly random, functions (described generally by information channels). These models have gained great popularity due to their ability to characterize complex probabilistic relationships arising in a wide variety of inference problems. In this talk, we introduce a new method for analyzing the fundamental limits of statistical inference in settings where the model is known. The validity of our method can…

Find out more »


MIT Statistics + Data Science Center
Massachusetts Institute of Technology
77 Massachusetts Avenue
Cambridge, MA 02139-4307
617-253-1764