Causal Inference with Random Forests
Many scientific and engineering challenges---ranging from personalized medicine to customized marketing recommendations---require an understanding of treatment heterogeneity. We develop a non-parametric causal forest for estimating heterogeneous treatment effects that is closely inspired by Breiman's widely used random forest algorithm. Given a potential outcomes framework with unconfoundedness, we show that causal forests are pointwise consistent for the true treatment effect, and have an asymptotically Gaussian and centered sampling distribution. We also propose a practical estimator for the asymptotic variance of causal…