Consistency of Co-clustering exchangeable graph data
We analyze the problem of partitioning a 0-1 array or bipartite graph into subgroups (also known as co-clustering), under a relatively mild assumption that the data is generated by a general nonparametric process. This problem can be thought of as co-clustering under model misspecification; we show that the additional error due to misspecification can be bounded by O(n^(-1/4)). Our result suggests that under certain sparsity regimes, community detection algorithms may be robust to modeling assumptions, and that their usage is…