Linear and Conic Programming Approaches to High-Dimensional Errors-in-variables Models
We consider the regression model with observation error in the design when the dimension can be much larger than the sample size and the true parameter is sparse. We propose two new estimators, based on linear and conic programming, and we prove that they satisfy oracle inequalities similar to those for the model with exactly known covariates. The only difference is that they contain additional scaling with the l1 or l2 norm of the true parameter. The scaling with the…