Views Navigation

Event Views Navigation

Exponential Error Bounds for Random Codes on the BSC

David Forney (MIT LIDS)

Abstract: One of Shannon's earliest results was his determination of the capacity of the binary symmetric channel (BSC). Shannon went on to show that, with randomly chosen codes and optimal decoding, the probability of decoding error decreases exponentially for any transmission rate less than capacity. Much of the important early work of Shannon, Elias, Fano and Gallager was devoted to determining bounds on the corresponding "error exponent." A later approach to this problem, pioneered by Csiszar and Korner, and now…

Find out more »

Quantile and Probability Curves without Crossing

Victor Chernozhukov (MIT Econ)

The most common approach to estimating conditional quantile curves is to fit a curve, typically linear, pointwise for each quantile. Linear functional forms, coupled with pointwise fitting, are used for a number of reasons including parsimony of the resulting approximations and good computational properties. The resulting fits, however, may not respect a logical monotonicity requirement -- that the quantile curve be increasing as a function of probability. This paper studies the natural monotonization of these empirical curves induced by sampling…

Find out more »

Fragility of Asymptotic Agreement under Bayesian Learning

David Forney (MIT LIDS)

One of Shannon's earliest results was his determination of the capacity of the binary symmetric channel (BSC). Shannon went on to show that, with randomly chosen codes and optimal decoding, the probability of decoding error decreases exponentially for any transmission rate less than capacity. Much of the important early work of Shannon, Elias, Fano and Gallager was devoted to determining bounds on the corresponding "error exponent." A later approach to this problem, pioneered by Csiszar and Korner, and now adopted…

Find out more »

Bounds on Stationary Expectations for Markov Processes

Peter Glynn (Stanford MS&E)

Many performance engineering and operations research modeling formulations lead to Markov models in which the key performance measure is an expectation defined in terms of the stationary distribution of the process. In models of realistic complexity, it is often difficult to compute such expectations in closed form. In this talk, we will discuss a simple class of bounds for such stationary expectations, and describe some of the mathematical subtleties that arise in making rigorous such bounds. We will also discuss…

Find out more »

Large deviations for random walks under subexponentiality: the big-jump domain

Ton Dieker (Georgia Tech I&SE)

Stimulated by applications to internet traffic modeling and insurance mathematics, distributions with heavy tails have been widely studied over the past decades. This talk addresses a fundamental large-deviation problem for random walks with heavy-tailed step-size distributions. We consider so-called subexponential step-size distributions, which constitute the most widely-used class of heavy-tailed distributions. I will present a theory to study sequences {x_n} for which P{S_n>x_n} behaves asymptotically like n P {S_1>x_n} for large n. (joint work with D. Denisov and V. Shneer)

Find out more »


MIT Statistics + Data Science Center
Massachusetts Institute of Technology
77 Massachusetts Avenue
Cambridge, MA 02139-4307
617-253-1764