Maximum likelihood for high-noise group orbit estimation and cryo-EM
Abstract: Motivated by applications to single-particle cryo-electron microscopy, we study a problem of group orbit estimation where samples of an unknown signal are observed under uniform random rotations from a rotational group. In high-noise settings, we show that geometric properties of the log-likelihood function are closely related to algebraic properties of the invariant algebra of the group action. Eigenvalues of the Fisher information matrix are stratified according to a sequence of transcendence degrees in this invariant algebra, and critical points…