Statistics and Data Science Seminar David Steurer (Cornell)
Sample-optimal inference, computational thresholds, and the methods of moments
Abstract: We propose an efficient meta-algorithm for Bayesian inference problems based on low-degree polynomials, semidefinite programming, and tensor decomposition. The algorithm is inspired by recent lower bound constructions for sum-of-squares and related to the method of moments. Our focus is on sample complexity bounds that are as tight as possible (up to additive lower-order terms)…