Views Navigation

Event Views Navigation

Calendar of Events

S Sun

M Mon

T Tue

W Wed

T Thu

F Fri

S Sat

0 events,

0 events,

0 events,

0 events,

0 events,

1 event,

Stochastics and Statistics Seminar Anna Gilbert (Yale University)

0 events,

0 events,

0 events,

0 events,

0 events,

0 events,

0 events,

0 events,

0 events,

0 events,

0 events,

0 events,

0 events,

1 event,

Stochastics and Statistics Seminar Jianfeng Lu (Duke University)

0 events,

0 events,

0 events,

0 events,

0 events,

0 events,

0 events,

0 events,

0 events,

0 events,

0 events,

0 events,

0 events,

1 event,

Stochastics and Statistics Seminar Lester Mackey (Microsoft Research)

0 events,

Project and Forget: Solving Large-Scale Metric Constrained Problems

Anna Gilbert (Yale University)
E18-304

Abstract: Many important machine learning problems can be formulated as highly constrained convex optimization problems. One important example is metric constrained problems. In this paper, we show that standard optimization techniques can not be used to solve metric constrained problems. To solve such problems, we provide a general active set framework, called Project and Forget, and several variants thereof that use Bregman projections. Project and Forget is a general purpose method that can be used to solve highly constrained convex…

Find out more »

Analysis of Flow-based Generative Models

Jianfeng Lu (Duke University)
E18-304

Abstract: In this talk, we will discuss recent progress on mathematical analysis of flow based generative models, which is a highly successful approach for learning a probability distribution from data and generating further samples. We will talk about some recent results in convergence analysis of diffusion models and related flow-based methods. In particular, we established convergence of score-based diffusion models applying to any distribution with bounded 2nd moment, relying only on a $L^2$-accurate score estimates, with polynomial dependence on all…

Find out more »

Advances in Distribution Compression

Lester Mackey (Microsoft Research)
E18-304

Abstract This talk will introduce three new tools for summarizing a probability distribution more effectively than independent sampling or standard Markov chain Monte Carlo thinning: Given an initial n point summary (for example, from independent sampling or a Markov chain), kernel thinning finds a subset of only square-root n points with comparable worst-case integration error across a reproducing kernel Hilbert space. If the initial summary suffers from biases due to off-target sampling, tempering, or burn-in, Stein thinning simultaneously compresses the…

Find out more »


MIT Statistics + Data Science Center
Massachusetts Institute of Technology
77 Massachusetts Avenue
Cambridge, MA 02139-4307
617-253-1764