Views Navigation

Event Views Navigation

Calendar of Events

S Sun

M Mon

T Tue

W Wed

T Thu

F Fri

S Sat

0 events,

0 events,

0 events,

0 events,

0 events,

0 events,

0 events,

0 events,

0 events,

0 events,

0 events,

0 events,

1 event,

Stochastics and Statistics Seminar Christian Wolf, MIT

0 events,

0 events,

0 events,

0 events,

0 events,

0 events,

1 event,

Stochastics and Statistics Seminar Pravesh Kothari, Princeton University

0 events,

0 events,

0 events,

0 events,

0 events,

0 events,

1 event,

Stochastics and Statistics Seminar Kengo Kato, Cornell University

0 events,

0 events,

0 events,

0 events,

0 events,

0 events,

0 events,

0 events,

Empirical methods for macroeconomic policy analysis

Christian Wolf, MIT
E18-304

Abstract: We show that, in a general family of linearized structural macroeconomic models, the counterfactual evolution of the economy under alternative policy rules is fully pinned down by two empirically estimable objects: (i) reduced-form projections with respect to a large information set; and (ii) the causal effects of policy shocks on macroeconomic aggregates. Under our assumptions, the derived counterfactuals are fully robust to the Lucas critique. Building on these insights, we discuss how to leverage the classical ``VAR'' approach to policy…

Find out more »

Efficient Algorithms for Semirandom Planted CSPs at the Refutation Threshold

Pravesh Kothari, Princeton University
E18-304

Abstract: We present an efficient algorithm to solve semi-random planted instances of any Boolean constraint satisfaction problem (CSP). The semi-random model is a hybrid between worst-case and average-case input models, where the input is generated by (1) choosing an arbitrary planted assignment x∗, (2) choosing an arbitrary clause structure, and (3) choosing literal negations for each clause from an arbitrary distribution "shifted by x∗" so that x∗ satisfies each constraint. For an n variable semi-random planted instance of a k-arity…

Find out more »

Entropic optimal transport: limit theorems and algorithms

Kengo Kato, Cornell University
E18-304

Abstract: In this talk, I will discuss my recent work on entropic optimal transport (EOT). In the first part, I will discuss limit theorems for EOT maps, dual potentials, and the Sinkhorn divergence. The key technical tool we use is a first and second-order Hadamard differentiability analysis of EOT potentials with respect to the marginals, from which the limit theorems, bootstrap consistency, and asymptotic efficiency of the empirical estimators follow. The second part concerns the entropic Gromov-Wasserstein (EGW) distance, which…

Find out more »


MIT Statistics + Data Science Center
Massachusetts Institute of Technology
77 Massachusetts Avenue
Cambridge, MA 02139-4307
617-253-1764