Fall 2021

Sept 17       Lorenzo Rosasco (MIT/Universita’ di Genova) –
                    Interpolation and Learning with Scale Dependent Kernels

Sept 24       Boaz Barak (Harvard University)
                    Representation and generalization 

Oct 1           Devavrat Shah (MIT)
                    Causal Matrix Completion

Oct 8           Yihong Wu (Yale University)
                    Recent Results in Planted Assignment Problems

Oct 15         Yuting Wei (Wharton School at the University of Pennsyvania)
                     Breaking the Sample Size Barrier in Reinforcement Learning

Oct 22         Kevin Jamieson (University of Washington)
                     Instance Dependent PAC Bounds for Bandits and Reinforcement Learning

Oct 29         Ronen Eldan (Weizmann Institute of Science/Princeton University)
                    Revealing the Simplicity of High-Dimensional Objects via Pathwise Analysis

Nov 5          Morgane Austern (Harvard University)
                   Asymptotics of learning on dependent and structured random objects

Nov 12        Cynthia Rush (Columbia University)
                    Characterizing the Type 1-Type 2 Error Trade-off for SLOPE

Nov 19        Pragya Sur (Harvard)
                    Precise high-dimensional asymptotics for AdaBoost via max-margins & min-norm
                    interpolants

Dec 3          Jesse Thaler (MIT)
                   The Geometry of Particle Collisions: Hidden in Plain Sight


MIT Statistics + Data Science Center
Massachusetts Institute of Technology
77 Massachusetts Avenue
Cambridge, MA 02139-4307
617-253-1764