An Information-Geometric View of Learning in High Dimensions

Gregory Wornell (MIT)
32-155

Abstract: We consider the problem of data feature selection prior to inference task specification, which is central to high-dimensional learning. Introducing natural notions of universality for such problems, we show a local equivalence among them. Our analysis is naturally expressed via information geometry, and represents a conceptually and practically useful learning methodology. The development reveals the key roles of the singular value decomposition, Hirschfeld-Gebelein-Renyi maximal correlation, canonical correlation and principle component analyses, Tishby's information bottleneck, Wyner's common information, Ky Fan…

Find out more »


MIT Statistics + Data Science Center
Massachusetts Institute of Technology
77 Massachusetts Avenue
Cambridge, MA 02139-4307
617-253-1764