Views Navigation

Event Views Navigation

Matrix Concentration for Products

Jonathan Niles-Weed (New York University)
online

Abstract: We develop nonasymptotic concentration bounds for products of independent random matrices. Such products arise in the study of stochastic algorithms, linear dynamical systems, and random walks on groups. Our bounds exactly match those available for scalar random variables and continue the program, initiated by Ahlswede-Winter and Tropp, of extending familiar concentration bounds to the noncommutative setting. Our proof technique relies on geometric properties of the Schatten trace class. Joint work with D. Huang, J. A. Tropp, and R. Ward.…

Find out more »

[POSTPONED] The Blessings of Multiple Causes

David Blei (Columbia University)
E18-304

  *Please note: this event has been POSTPONED until Fall 2020* See MIT’s COVID-19 policies for more details. Title: The Blessings of Multiple Causes Abstract: Causal inference from observational data is a vital problem, but it comes with strong assumptions. Most methods require that we observe all confounders, variables that affect both the causal variables and the outcome variables. But whether we have observed all confounders is a famously untestable assumption. We describe the deconfounder, a way to do causal…

Find out more »

On Using Graph Distances to Estimate Euclidean and Related Distances

Ery Arias-Castro (University of California, San Diego)
online

Abstract:  Graph distances have proven quite useful in machine learning/statistics, particularly in the estimation of Euclidean or geodesic distances. The talk will include a partial review of the literature, and then present more recent developments on the estimation of curvature-constrained distances on a surface, as well as on the estimation of Euclidean distances based on an unweighted and noisy neighborhood graph. - About the Speaker:  Ery Arias-Castro received his Ph.D. in Statistics from Stanford University in 2004. He then took…

Find out more »

How to Trap a Gradient Flow

Sébastien Bubeck (Microsoft Research)
online

Abstract: In 1993, Stephen A. Vavasis proved that in any finite dimension, there exists a faster method than gradient descent to find stationary points of smooth non-convex functions. In dimension 2 he proved that 1/eps gradient queries are enough, and that 1/sqrt(eps) queries are necessary. We close this gap by providing an algorithm based on a new local-to-global phenomenon for smooth non-convex functions. Some higher dimensional results will also be discussed. I will also present an extension of the 1/sqrt(eps)…

Find out more »

Naive Feature Selection: Sparsity in Naive Bayes

Alexandre d'Aspremont (ENS, CNRS)
online

Abstract: Due to its linear complexity, naive Bayes classification remains an attractive supervised learning method, especially in very large-scale settings. We propose a sparse version of naive Bayes, which can be used for feature selection. This leads to a combinatorial maximum-likelihood problem, for which we provide an exact solution in the case of binary data, or a bound in the multinomial case. We prove that our bound becomes tight as the marginal contribution of additional features decreases. Both binary and…

Find out more »

The Ethical Algorithm

Michael Kearns (University of Pennsylvania)
online

Title: The Ethical Algorithm Abstract: Many recent mainstream media articles and popular books have raised alarms over anti-social algorithmic behavior, especially regarding machine learning and artificial intelligence. The concerns include leaks of sensitive personal data by predictive models, algorithmic discrimination as a side-effect of machine learning, and inscrutable decisions made by complex models. While standard and legitimate responses to these phenomena include calls for stronger and better laws and regulations, researchers in machine learning, statistics and related areas are also…

Find out more »

SES & IDPS Dissertation Defense – Rui Sun

Rui Sun
online

Online Learning and Optimization in Operations Management ABSTRACT We study in this thesis online learning and optimization problems in operations management where we need to make decisions in the face of incomplete information and operational constraints in a dynamic environment. We first consider an online matching problem where a central platform needs to match a number of limited resources to different groups of users that arrive sequentially over time. The platform does not know the reward of each matching option…

Find out more »

Stein’s method for multivariate continuous distributions and applications

Gesine Reinert, University of Oxford
online

Abstract: Stein’s method is a key method for assessing distributional distance, mainly for one-dimensional distributions. In this talk we provide a general approach to Stein’s method for multivariate continuous distributions. Among the applications we consider is the Wasserstein distance between two continuous probability distributions under the assumption of existence of a Poincare constant. This is joint work with Guillaume Mijoule (INRIA Paris) and Yvik Swan (Liege). - Bio: Gesine Reinert is a Research Professor of the Department of Statistics and…

Find out more »

Causal Inference and Overparameterized Autoencoders in the Light of Drug Repurposing for SARS-CoV-2

Caroline Uhler, MIT
online

Abstract:  Massive data collection holds the promise of a better understanding of complex phenomena and ultimately, of better decisions. An exciting opportunity in this regard stems from the growing availability of perturbation / intervention data (drugs, knockouts, overexpression, etc.) in biology. In order to obtain mechanistic insights from such data, a major challenge is the development of a framework that integrates observational and interventional data and allows predicting the effect of yet unseen interventions or transporting the effect of interventions…

Find out more »


MIT Statistics + Data Science Center
Massachusetts Institute of Technology
77 Massachusetts Avenue
Cambridge, MA 02139-4307
617-253-1764