Structure in multi-index tensor data: a trivial byproduct of simpler phenomena?
Abstract: As large tensor-variate data become increasingly common across applied machine learning and statistics, complex analysis methods for these data similarly increase in prevalence. Such a trend offers the opportunity to understand subtler and more meaningful features of the data that, ostensibly, could not be studied with simpler datasets or simpler methodologies. While promising, these advances are also perilous: novel analysis techniques do not always consider the possibility that their results are in fact an expected consequence of some simpler, already-known…