Sparse Canonical Correlation Analysis: Minimaxity and Adaptivity
Canonical correlation analysis is a widely used multivariate statistical technique for exploring the relation between two sets of variables. In this talk we consider the problem of estimating the leading canonical correlation directions in high dimensional settings. Recently, under the assumption that the leading canonical correlation directions are sparse, various procedures have been proposed for many high dimensional applications involving massive data sets. However, there has been few theoretical justification available in the literature. In this talk, we establish rate-optimal…