Sharper Risk Bounds for Statistical Aggregation
Abstract: In this talk, we revisit classical results in the theory of statistical aggregation, focusing on the transition from global complexity to a more manageable local one. The goal of aggregation is to combine several base predictors to achieve a prediction nearly as accurate as the best one, without assumptions on the class structure or target. Though studied in both sequential and statistical settings, they traditionally use the same "global" complexity measure. We highlight the lesser-known PAC-Bayes localization enabling us…