Views Navigation

Event Views Navigation

Clustering of sparse networks: Phase transitions and optimal algorithms

Lenka Zdeborova (CEA)
E62-587

A central problem in analyzing networks is partitioning them into modules or communities, clusters with a statistically homogeneous pattern of links to each other or to the rest of the network. A principled approach to address this problem is to fit the network on a stochastic block model, this task is, however, intractable exactly. In this talk we discuss application of belief propagation algorithm to module detection. In the first part we present an asymptotically exact analysis of the stochastic…

Find out more »

Uncertainty quantification and confidence sets in high-dimensional models

Richard Nickl (University of Cambridge)
E62-587

While much attention has been paid recently to the construction of optimal algorithms that adaptively estimate low-dimensional parameters (described by sparsity, low-rank, or smoothness) in high-dimensional models, the theory of statistical inference and uncertainty quantification (in particular hypothesis tests & confidence sets) is much less well-developed. We will discuss some perhaps surprising impossibility results in the basic high-dimensional compressed sensing model, and some of the recently remerging positive results in the area.

Find out more »

Asymptotics and concentration for sample covariance

Vladimir Koltchinskii (Georgia Tech)
E62-650

We will discuss recent moment bounds and concentration inequalities for sample covariance operators based on a sample of n i.i.d. Gaussian random variables taking values in an infinite dimensional space. These bounds show that the size of the operator norm of the deviation of sample covariance from the true covariance can be completely characterized by two parameters: the operator norm of the true covariance and its so called "effective rank". These results rely on Talagrand's generic chaining bounds and on…

Find out more »

A Geometric Approach to Weakly Identified Econometric Models

Anna Mikusheva (MIT Economics)
E62-687

Many nonlinear Econometric models show evidence of weak identification. In this paper we consider minimum distance statistics and show that in a broad class of models the problem of testing under weak identification is closely related to the problem of testing a curved null in a finite-sample Gaussian model. Using the curvature of the model, we develop new finite-sample bounds on the distribution of minimum-distance statistics, which we show can be used to detect weak identification and to construct tests…

Find out more »

High Dimensional Covariance Matrix Estimations and Factor Models

Yuan Liao (University of Maryland)
E62-587

Large covariance matrix estimation is crucial for high-dimensional statistical inferences, and has also played an central role in factor analysis. Applications are found in analyzing financial risks, climate data, genomic data and PCA, etc. Commonly used approaches to estimating large covariances include shrinkages and sparse modeling. This talk will present new theoretical results on estimating large (inverse) covariance matrices under large N large T asymptotics, with a focus on the roles it plays in statistical inferences for large panel data…

Find out more »

Beyond Berry Esseen: Structure and Learning of Sums of Random Variables

Constantinos Daskalakis (MIT EECS)
E62-587

The celebrated Berry-Esseen theorem, and its variants, provide a useful approximation to the sum of independent random variables by a Gaussian. In this talk, I will restrict attention to the important case of sums of integer random variables, arguing that Berry-Esseen theorems fall short from characterizing their general structure. I will offer stronger finitary central limit theorems, tightly characterizing the structure of these distributions, and show their implications to learning. In particular, I will present algorithms that can learn sums…

Find out more »

Optimal stochastic transport

Alfred Galichon (Sciences Po, Paris)
E62-587

We explore the link between the Monge-Kantorovich problem and the Skorohod embedding problem. This question arises in particular in Mathematical Finance when seeking model-free bounds on some option prices when the marginal distributions of the underlying at various maturities are implied by European options prices. We provide a stochastic control approach which we connect to several important constructions. Finally we revisit in this light the celebrated Azéma-Yor solution of the Skorohod embedding problem. This talk is based on joint works…

Find out more »

Sparse Canonical Correlation Analysis: Minimaxity and Adaptivity

Harrison Huibin Zhou (Yale University)
E62-587

Canonical correlation analysis is a widely used multivariate statistical technique for exploring the relation between two sets of variables. In this talk we consider the problem of estimating the leading canonical correlation directions in high dimensional settings. Recently, under the assumption that the leading canonical correlation directions are sparse, various procedures have been proposed for many high dimensional applications involving massive data sets. However, there has been few theoretical justification available in the literature. In this talk, we establish rate-optimal…

Find out more »

Linear Regression with Many Included Covariates

Whitney Newey (MIT Economics)
E62-587

We consider asymptotic inference for linear regression coefficients when the number of included covariates grows as fast as the sample size. We find a limiting normal distribution with asymptotic variance that is larger than the usual one. We also find that all of the usual versions of heteroskedasticity consistent standard error estimators are inconsistent under this asymptotics. The problem with these standard errors is that they do not make a correct "degrees of freedom" adjustment. We propose a new heteroskedasticity…

Find out more »

Central Limit Theorems and Bootstrap in High Dimensions

Denis Chetverikov (UCLA)
E62-450

We derive central limit and bootstrap theorems for probabilities that centered high-dimensional vector sums hit rectangles and sparsely convex sets. Specifically, we derive Gaussian and bootstrap approximations for the probabilities Pr(n−1/2∑ni=1Xi∈A) where X1,…,Xn are independent random vectors in ℝp and A is a rectangle, or, more generally, a sparsely convex set, and show that the approximation error converges to zero even if p=pn→∞ and p≫n; in particular, p can be as large as O(eCnc) for some constants c,C>0. The result…

Find out more »


MIT Statistics + Data Science Center
Massachusetts Institute of Technology
77 Massachusetts Avenue
Cambridge, MA 02139-4307
617-253-1764