Learning with Random Features and Kernels: Sharp Asymptotics and Universality Laws
Abstract: Many new random matrix ensembles arise in learning and modern signal processing. As shown in recent studies, the spectral properties of these matrices help answer crucial questions regarding the training and generalization performance of neural networks, and the fundamental limits of high-dimensional signal recovery. As a result, there has been growing interest in precisely understanding the spectra and other asymptotic properties of these matrices. Unlike their classical counterparts, these new random matrices are often highly structured and are the…