Testing the I.I.D. assumption online
Abstract: Mainstream machine learning, despite its recent successes, has a serious drawback: while its state-of-the-art algorithms often produce excellent predictions, they do not provide measures of their accuracy and reliability that would be both practically useful and provably valid. Conformal prediction adapts rank tests, popular in nonparametric statistics, to testing the IID assumption (the observations being independent and identically distributed). This gives us practical measures, provably valid under the IID assumption, of the accuracy and reliability of predictions produced by…