Functions space view of linear multi-channel convolution networks with bounded weight norm
Abstract: The magnitude of the weights of a neural network is a fundamental measure of complexity that plays a crucial role in the study of implicit and explicit regularization. For example, in recent work, gradient descent updates in overparameterized models asymptotically lead to solutions that implicitly minimize the ell_2 norm of the parameters of the model, resulting in an inductive bias that is highly architecture dependent. To investigate the properties of learned functions, it is natural to consider a function…