Views Navigation

Event Views Navigation

Calendar of Events

S Sun

M Mon

T Tue

W Wed

T Thu

F Fri

S Sat

0 events,

0 events,

0 events,

1 event,

Statistics and Data Science Seminar Pierre Jacob (Harvard)

0 events,

1 event,

Statistics and Data Science Seminar Joan Bruna Estrach (NYU)

0 events,

0 events,

0 events,

0 events,

0 events,

0 events,

0 events,

0 events,

0 events,

0 events,

0 events,

0 events,

0 events,

1 event,

Statistics and Data Science Seminar Alex Dimakis (University of Texas at Austin)

0 events,

0 events,

0 events,

0 events,

0 events,

0 events,

0 events,

0 events,

0 events,

0 events,

0 events,

0 events,

0 events,

1 event,

Statistics and Data Science Seminar Susan Murphy (Harvard)

0 events,

Unbiased Markov chain Monte Carlo with couplings

Pierre Jacob (Harvard)
E18-304

Abstract: Markov chain Monte Carlo methods provide consistent approximations of integrals as the number of iterations goes to infinity. However, these estimators are generally biased after any fixed number of iterations, which complicates both parallel computation. In this talk I will explain how to remove this burn-in  bias by using couplings of Markov chains and…

Find out more »

Statistics, Computation and Learning with Graph Neural Networks

Joan Bruna Estrach (NYU)
E18-304

Abstract:  Deep Learning, thanks mostly to Convolutional architectures, has recently transformed computer vision and speech recognition. Their ability to encode geometric stability priors, while offering enough expressive power, is at the core of their success. In such settings, geometric stability is expressed in terms of local deformations, and it is enforced thanks to localized convolutional operators…

Find out more »

Generative Models and Compressed Sensing

Alex Dimakis (University of Texas at Austin)
E18-304

Abstract:   The goal of compressed sensing is to estimate a vector from an under-determined system of noisy linear measurements, by making use of prior knowledge in the relevant domain. For most results in the literature, the structure is represented by sparsity in a well-chosen basis. We show how to achieve guarantees similar to standard compressed…

Find out more »

Challenges in Developing Learning Algorithms to Personalize Treatment in Real Time

Susan Murphy (Harvard)
E18-304

Abstract:  A formidable challenge in designing sequential treatments is to  determine when and in which context it is best to deliver treatments.  Consider treatment for individuals struggling with chronic health conditions.  Operationally designing the sequential treatments involves the construction of decision rules that input current context of an individual and output a recommended treatment.   That is,…

Find out more »


MIT Statistics + Data Science Center
Massachusetts Institute of Technology
77 Massachusetts Avenue
Cambridge, MA 02139-4307
617-253-1764